

Fig. 2. Current-voltage characteristics of AI-I-In samples at different pressures, $T=(1.17\pm0.02)$ °K; normalized units are along the I-axis

Fig. 3. dI/dU-U characteristics of Al-I-In samples different pressures. $T=(1.16\pm0.02)$ k

where the error does not include the inaccuracy in pressure measurement Such $T_{\rm c}$ change of In films with pressure excellently coincides with Bernard Brandt, and Ginzburg's measurements [10] on massive indium.

Fig. 2 shows voltage-current characteristics for two Al-I-In samples plotters. at different pressures. The energy gap was defined from the maxima of the (dI/dU)-U characteristics (Fig. 3).

Fig. 4 shows the result of high pressure influence on the energy gap of indian For comparison the $2 A(p) = 3.69 \ kT_c$ line is drawn which in fact corresponds to the critical temperature change. The gap values obtained by extrapolating 2d(T) to T=0°K are also included in Table 1. From experiments it is found

$$\frac{d\,2\,\Delta}{dp} = -\,(1.43\,\pm\,0.13)\times10^{-5}\frac{\text{meV}}{\text{atm}}.$$

The energy gap of In at zero pressure, 2 $\varDelta(0.0)=(3.69\pm0.04)\,kT_{\rm c}$, is in gas agreement with data obtained from precision measurements of critical field

where

curves [11], where the coefficient defining a devia tion from the parabola was found to be

$$a_{\rm In} = 2 \pi \gamma \frac{T_{\rm c}^2}{H_{\rm o}^2} = 0.985$$
 (3)

$$\gamma = \frac{2}{3}\pi^2 \, k^2 \, N \, . \tag{I}$$

Fig. 4. Change of the superconducting indium energy gap under $p^{\mu\nu}$ sure. o experimental points

Effect of High Pressure on the Energy Gap of Indium and Thallium

the basis of the thermodynamic relation [1]

$$\Delta = k \sqrt{\frac{\pi}{6 \, \gamma}} \, H_0 \tag{5}$$

425

(3) we have

$$\frac{\Delta}{kT_{\rm c}} = 1.82 \, a^{-\frac{1}{2}}.\tag{6}$$

ben from our experiments it follows that the parameter a increases with sure from 0.985 to 1.04 ($p=14\,\mathrm{katm}$), i.e. it approaches the BCS case. gimenta points $\Delta h = h - (1 - t^2)$ given in [10] for indium clearly show adency to the above mentioned increase of a with pressure (see Fig. 6 in In principle on the basis of (5) one may estimate the change of state aty N with pressure. Using our gap data and those of $H_0(p)$ from [10], state density seems to decrease by no more than 2% at 14 katm.

ballium: Because of quick oxidation of Tl films Al-I-Tl samples were ged in the bomb immediately after preparation, and control measurement mall pressure were carried out after some compression cycles. After such occdure the film critical temperature was (2.38 \pm 0.01) $^{\circ} ext{K}$ at zero pressure. energy gap here is $2 \triangle (0.0) = (0.75 \pm 0.01) \text{ meV} = (3.65 \pm 0.06) kT_{c}$ is in good agreement with Clark's recent measurements [12].

the small pressure range (2000 to 4000 atm) the anomalous change of al temperature typical of massive pure Tl [13] was not observed. cal temperature linearly decreased up to (2.34 \pm 0.01) $^{\circ}{
m K}$ at p=8 katm c in qualitative agreement with Gey's data [14] on the dependence of $T_{\rm c}$ of Tl on residual resistance produced by plastic deformation at different

fig. 5 shows $I\!-\!U$ characteristics for Al–I–Tl at different pressures. The gap we obtained at 8 katm, $2 \Delta (8.0) = (0.73 \pm 0.01) \text{ meV} = (3.64 \pm 0.06) \ kT_c$ as rather weak dependence in this pressure range. However, this does not ade the possibility that $2 \, \varDelta/kT_{\rm c}$ changes for

dlium at higher pressures. Work in this direc-

is in progress.

The main result of gap tunnelling measurements superconductors under pressure is that the t of $2 A/kT_e$ decrease initially discovered on which is a representative of superconductors h strong electron-phonon interaction, shows Gerent dependence on superconductors with rmediate coupling: In, Sn, and perhaps Tl. This umstance makes theoretical investigations essary to obtain a relation connecting the gap

^{: 5.} Voltage-current characteristics of Al–I–TI samples at different states, $T=(1.16\pm0.02)$ 2K; normalized units are along the I-axis